Drug-induced changes in the electrically evoked release of 3 H- γ -aminobutyric acid (3 H-GABA) from spinal cord

G. G. S. COLLINS

Department of Pharmacology, School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX

It has been suggested (Eccles, Schmidt & Willis, 1963) that GABA is the transmitter involved in the phenomenon of presynaptic inhibition in the spinal cord and recent evidence, both neurophysiological (Davidoff, 1972) and biochemical (Mitchell & Roberts, 1972), supports this hypothesis. In the present study, the effect of various procedures on the electrically evoked release of ³H-GABA from frog spinal cords have been investigated.

Sagitally hemisected frog spinal cords were transferred to a 500 μ l capacity bath (Mitchell & Phillis, 1962) containing oxygenated amphibian Ringer solution at 10–12° C to which amino-oxyacetic acid (10^{-5} M) had been added to inhibit GABA metabolism. Preparations were incubated for 1 h with 3 H-GABA (10^{-9} M) after which the Ringer solution was replaced at 5 min intervals with fresh solution and the radioactivity in each sample estimated. Using a variety of parameters, electrical stimulation of roots failed to evoke increased GABA release whereas stimulation of the rostral end of the cord caused large consistent increases in the efflux of 3 H-GABA; two release maxima were observed, one at 10 Hz ($132\pm14\%$ S.E. of mean of pre-stimulation release, 10 experiments) and a second at 30 Hz ($124\pm17\%$ of pre-stimulation release, 10 experiments). Stimulation of the caudal end failed to evoke a significantly increased efflux of 3 H-GABA (5 experiments) and in addition, successive sectionings of the cord from caudal toward rostral end resulted in a progressive diminution in the amount of 3 H-GABA released by electrical stimulation.

TABLE 1. Effect of various drugs on the electrically evoked release of *H-GABA from the intact frog spinal cord

Drug	% Increase in GABA release		% Control	
	10 Hz	30 Hz	10 Hz	30 Hz
Control	$132 \pm 14 (10)$	$124 \pm 17 (10)$		
p-Hydroxymercuribenzoate (0.01 mм)	$30 \pm 7*(4)$	$55\pm16*(5)$	23	53
Ouabain (0.01 mм)	44 I 9* (4)	$18\pm 3*(4)$	33	15
L-2,4-diaminobutyric acid (1.0 mм)	$169 \pm 25 (7)$		128	
Picrotoxin (0·1 mм)	$68\pm14*(8)$	$41 \pm 7* (5)$	52	33
Strychnine (0·1 mm)		$116\pm 28 (5)$		94
Bicuculline (0.1 mm)	$217 \pm 14*(8)$	$188 \pm 8* (12)$	164	152
(0·01 mм)	$114\pm17(5)$	$144 \pm 28 (5)$	86	116
Minus Ca++	47±9* (10)	$52\pm12*(10)$	36	42
Minus Ca++, plus Mg++	$13\pm 3*(6)$	$13\pm 3*(6)$	10	11

The descending tracts of each cord were stimulated electrically (4 min., 1 ms, 5 mA) twice before and twice during drug application and the percentage increase in 3 H-GABA release calculated. The mean of each pair of estimates was used in the calculation of the values in the Table which are the means $\pm s.e.m$. for the number of preparations shown in parentheses. Asterisk denotes P < 0.05.

Table 1 shows the effects of various procedures on the electrically evoked release of ³H-GABA. Release was calcium dependent and was inhibited by the metabolic inhibitors p-hydroxymercuribenzoate, ouabain and also by picrotoxin. Bicuculline significantly increased evoked release (see Table 1) whereas strychnine was without effect. The differences in the effects of bicuculline and picrotoxin on ³H-GABA release suggest that blockade of GABA receptors is not their sole mechanism of action.

This work was supported by a grant from the M.R.C. to Professor D. W. Straughan.

REFERENCES

DAVIDOFF, R. A. (1972). The effects of bicuculline on the isolated spinal cord of the frog. Exp. Neurol., 35, 179-193.

ECCLES, J. C., SCHMIDT, R. & WILLIS, W. D. (1963). Pharmacological studies on presynaptic inhibition. J. Physiol., Lond., 168, 500-530.

MITCHELL, J. F. & PHILLIS, J. W. (1962). Cholinergic transmission in the frog spinal cord. Br. J. Pharmac. Chemother., 19, 534-542.

MITCHELL, J. F. & ROBERTS, P. J. (1972). Evoked release of amino acids from the intact spinal cord. Br. J. Pharmac., 45, 175-176P.